Name: \qquad
Multiple choice problems are worth four points each; workout problems worth six points each. You must show your work on the work-out problems.

1. What is the range of $f(x)=3^{x}$?
A. $(-\infty, \infty)$
B. $(3, \infty)$
C. $(0, \infty)$
D. $[3, \infty)$
2. Given that $g(x)=e^{x-2}+1$ find the following accurately to three decimal places:
(a) $g(2.45)=$
(b) $g(-0.12)=$
3. $\log _{a}\left(\frac{M}{N}\right)=$
A. $\log _{a} M+\log _{a} N$
B. $\log _{a}(M-N)$
C. $M \log _{a} N$
D. $\log _{a} M-\log _{a} N$
4. Given that the graph of $y=a^{x}$ contains the point $\left(-1, \frac{1}{3}\right)$, find a.
5. Written in logarithmic form, $3^{4}=81$ is
A. $4=\log _{3} 81$
B. $3=\log _{4} 81$
C. $81=\log _{3} 4$
D. $4=\log _{81} 3$
6. Using the equivalence between exponential and logarithmic equations, re-write each of the following in an equivalent form of opposing type:
(a) $\log _{7} r=s$
(b) $4^{x+1}=t$
7. What is the domain of $y=\log _{5}(x-3)$
A. $(-3, \infty)$
B. $(3, \infty)$
C. $(-\infty, \infty)$
D. $(0, \infty)$
8. Find $\log _{3}(11.27)$ accurately to four decimal places.
9. $3^{\log _{3} 5}=$
A. 9^{5}
B. 5
C. $\log 5$
D. $\log _{9} 5$
10. Write in expanded form: $\log \frac{x^{2} \sqrt{y}}{z^{3}}$
11. In the matrix $A=\left[\begin{array}{ll}2 & 0 \\ 3 & 7\end{array}\right], a_{21}=$
A. 2
B. 0
C. 3
D. 7
12. Solve to three decimal place accuracy: $4^{2 x-1}=9$.
13. The system of equations $\left\{\begin{array}{l}x+y=3 \\ x+y=0\end{array}\right.$
A. independent
B. consistent
C. dependent
D. inconsistent
14. Write in condensed form: $\log 2+3 \log M-\frac{1}{2} \log N$
15. The size of $A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 4 & 0 & 7\end{array}\right]$, is
A. 6
B. 3×2
C. 2×3
D. incompatible
16. Solve $\log _{3}(x-2)<2$ and express the solution in interval notation.
17. $\left|\begin{array}{rr}2 & -1 \\ 3 & 5\end{array}\right|=$
A. -30
B. 13
C. 9
D. 7
18. Use either substitution or elimination to solve $\left\{\begin{array}{l}2 x+y=1 \\ x-2 y=3\end{array}\right.$ You must show your work.
19. Given $A=\left[\begin{array}{rr}2 & 0 \\ 1 & -1\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & -1 \\ 0 & 2\end{array}\right]$ find $2 A-B$.
A. $\left[\begin{array}{rr}3 & 1 \\ 2 & -4\end{array}\right]$
B. $\left[\begin{array}{ll}3 & -1 \\ 2 & -4\end{array}\right]$
C. $\left[\begin{array}{rr}3 & 1 \\ 1 & -3\end{array}\right]$
D. $\left[\begin{array}{ll}3 & -1 \\ 1 & -3\end{array}\right]$
20. Given $A=\left[\begin{array}{rr}2 & 0 \\ 1 & -1 \\ 3 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & -1 \\ 0 & 2\end{array}\right]$, find the product $A B$.

Bonus (10 points): Solve for $x: \operatorname{det}\left(\left[\begin{array}{ll}1 & 2 \\ 8 & 1\end{array}\right]-x\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)=0$.

Page 6

