Name:

Multiple choice problems are worth four points each; workout problems worth six points each. You must show your work on the work-out problems.

- 1. What is the range of $f(x) = 3^x$?
 - A. $(-\infty,\infty)$
 - B. $(3, \infty)$
 - C. $(0,\infty)$
 - D. $[3,\infty)$
- 2. Given that $g(x) = e^{x-2} + 1$ find the following accurately to three decimal places:
 - (a) g(2.45) =

(b) g(-0.12) =

3.
$$\log_a \left(\frac{M}{N}\right) =$$

A. $\log_a M + \log_a N$
B. $\log_a (M - N)$
C. $M \log_a N$
D. $\log_a M - \log_a N$

4. Given that the graph of $y = a^x$ contains the point $\left(-1, \frac{1}{3}\right)$, find a.

- 5. Written in logarithmic form, $3^4 = 81$ is
 - A. $4 = \log_3 81$ B. $3 = \log_4 81$
 - C. $81 = \log_3 4$
 - D. $4 = \log_{81} 3$
- 6. Using the equivalence between exponential and logarithmic equations, re-write each of the following in an equivalent form of opposing type:
 - (a) $\log_7 r = s$

(b) $4^{x+1} = t$

- 7. What is the domain of $y = \log_5(x 3)$
 - A. $(-3,\infty)$
 - B. $(3, \infty)$
 - C. $(-\infty,\infty)$
 - D. $(0,\infty)$
- 8. Find $\log_3(11.27)$ accurately to four decimal places.

- 9. $3^{\log_3 5} =$
 - A. 9^{5}
 - B. 5
 - C. $\log 5$
 - D. $\log_9 5$
- 10. Write in expanded form: $\log \frac{x^2 \sqrt{y}}{z^3}$

11. In the matrix $A = \begin{bmatrix} 2 & 0 \\ 3 & 7 \end{bmatrix}$, $a_{21} =$

- A. 2
- B. 0
- C. 3
- D. 7

12. Solve to three decimal place accuracy: $4^{2x-1} = 9$.

- 13. The system of equations $\begin{cases} x+y=3\\ x+y=0 \end{cases}$
 - A. independent
 - B. consistent
 - C. dependent
 - D. inconsistent
- 14. Write in condensed form: $\log 2 + 3 \log M \frac{1}{2} \log N$

15. The size of $A = \begin{bmatrix} 1 & -1 & 2 \\ 4 & 0 & 7 \end{bmatrix}$, is A. 6 B. 3×2 C. 2×3

D. incompatible

16. Solve $\log_3(x-2) < 2$ and express the solution in interval notation.

17.
$$\begin{vmatrix} 2 & -1 \\ 3 & 5 \end{vmatrix} =$$

A. -30
B. 13
C. 9
D. 7

18. Use either substitution or elimination to solve $\begin{cases} 2x+y=1\\ x-2y=3 \end{cases}$ You must show your work.

19. Given
$$A = \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$ find $2A - B$.
A. $\begin{bmatrix} 3 & 1 \\ 2 & -4 \end{bmatrix}$
B. $\begin{bmatrix} 3 & -1 \\ 2 & -4 \end{bmatrix}$
C. $\begin{bmatrix} 3 & 1 \\ 1 & -3 \end{bmatrix}$
D. $\begin{bmatrix} 3 & -1 \\ 1 & -3 \end{bmatrix}$
20. Given $A = \begin{bmatrix} 2 & 0 \\ 1 & -1 \\ 3 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$, find the product AB .

Math	107
------	-----

Exam 4

Bonus (10 points): Solve for x: det $\left(\begin{bmatrix} 1 & 2 \\ 8 & 1 \end{bmatrix} - x \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = 0.$