Octonions |
|
|
|
\(P_{0}: (a,b)(c,d)=(ac-d^*b,da+bc^*)\) |
\(\uparrow \) |
\(\circlearrowleft\) |
\(\rightarrow\) |
\(P_{1}: (a,b)(c,d)=(ac-db^*,a^*d+cb)\) |
\(\downarrow \) |
\(\circlearrowright\) |
\(\leftarrow\) |
\(P_{2}: (a,b)(c,d)=(ca-b^*d,da^*+bc)\) |
\(\downarrow\) |
\(\circlearrowleft\) |
\(\rightarrow\) |
\(P_{3}: (a,b)(c,d)=(ca-bd^*,ad+c^*b)\) |
\(\uparrow\) |
\(\circlearrowright\) |
\(\leftarrow\) |
Not Octonions (but similar) |
|
|
|
\(Q_{0}: (a,b)(c,d)=(ca-d^*b,da+bc^*)\) |
\(\uparrow\) |
\(\circlearrowright\) |
\(\rightarrow\) |
\(Q_{1}: (a,b)(c,d)=(ca-db^*,a^*d+cb)\) |
\(\downarrow \) |
\(\circlearrowleft\) |
\(\leftarrow\) |
\(Q_{2}: (a,b)(c,d)=(ac-b^*d,da^*+bc)\) |
\(\downarrow \) |
\(\circlearrowright\) |
\(\rightarrow\) |
\(Q_{3}: (a,b)(c,d)=(ac-bd^*,ad+c^*b)\) |
\(\uparrow \) |
\(\circlearrowleft\) |
\(\leftarrow\) |
\(\downarrow\qquad\)Vertex to base |
|
|
\(\uparrow\qquad\)Base to vertex |
|
|
\(\circlearrowleft\qquad\)Traverse circle counter-clockwise |
|
|
\(\circlearrowright\qquad\)Traverse circle clockwise |
|
|
\(\rightarrow\qquad\)Traverse bases counter-clockwise |
|
|
\(\leftarrow\qquad\)Traverse bases clockwise |
|
|