Exercise 7.4.1

\(\mathbb{S}_1\):

\(\begin{eqnarray*} x + ~~y + z &=& ~~~0\\ - x + 2 y \quad~~~ &=& -1\\ x ~\quad\quad + z &=& ~~~1 \end{eqnarray*}\)

The coefficient matrix is:

\(\left[\begin{array}{rrr|r} 1 & 1 & 1 & 0\\ -1 & 2 & 0 & -1\\ 1 & 0 & 1 & 1 \end{array}\right]\)

Performing the following two row operations

\(E_2 \to E_1 + E_2\)

\(E_3 \to -E_1 + E_3\)

clears out the entries below the main diagonal in column one with the following result:

\(\left[\begin{array}{rrr|r} 1 & 1 & 1 & 0\\ 0 & 3 & 1 & -1\\ 0 & -1 & 0 & 1 \end{array}\right]\)

\(E_2\leftrightarrow E_3\)

\(\left[\begin{array}{rrr|r} 1 & 1 & 1 & 0\\ 0 & -1 & 0 & 1 \\ 0 & 3 & 1 & -1 \end{array}\right]\)

\(E_2 \to -E_2\)

\(\left[\begin{array}{rrr|r} 1 & 1 & 1 & 0\\ 0 & 1 & 0 & -1\\ 0 & 3 & 1 & -1 \end{array}\right]\)

The following operation clears out the entry below the main diagonal in column 2.

\( E_3 \to -3E_2 + E_3\)

This results in the following triangularized matrix.

\(\left[\begin{array}{rrr|r} 1 & 1 & 1 & 0\\ 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 2 \\ \end{array}\right]\)

Now we begin the process of back-substitution, which zeros out the non-zero entries above the main diagonal.

\(E_1 \to -E_3 + E_1\)

\(\left[\begin{array}{rrr|r} 1 & 1 & 0 & -2\\ 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 2 \end{array}\right]\)

\(E_1 \to -E_2 + E_1\)

\(\left[\begin{array}{rrr|r} 1 & 0 & 0 & -1\\ 0 & 1 & 0 & -1\\ 0 & 0 & 1 & 2 \end{array}\right]\)

Which corresponds to a solution

\(\begin{eqnarray*} x \quad\quad &=& -1\\ y \quad &=& -1\\ z &=&~~~2 \end{eqnarray*}\)