## 1

Find the solution of the equation $$2(1-x)=x+8\\$$

1. $$-3\\$$
2. $$6\\$$
3. $$-2\\$$
4. $$4\\$$

## 2

Find all real solutions of the equation $$x^2+3x-10=0\\$$.

1. $$2\\$$
2. $$-5,2\\$$
3. $$5,-2\\$$
4. $$5\\$$

## 3

Simplify the expression: $$x-3\cdot x+3\\$$

1. $$-2x+3\\$$
2. $$x^2-9\\$$
3. $$x^2-6x+9\\$$
4. $$x^2-6x-9\\$$

## 4

Find all complex solutions of the equation $$x^2-2x+5=0\\$$.

1. $$2\pm i\\$$
2. $$0,2\\$$
3. $$\dfrac{x^2+5}{2}\\$$
4. $$1\pm 2i\\$$

## 5

Simplify the expression $$\dfrac{(x^2)^3}{x^2x^3} \\$$

1. $$1\\$$
2. $$x\\$$
3. $$x^2\\$$
4. $$x^{-1}\\$$

## 6

Solve the literal equation for $$P$$: $$A-P=\dfrac{A+P}{B}\\$$

1. $$P=\dfrac{A(B-1)}{B+1}\\$$
2. $$P=-A\\$$
3. $$P=1\\$$
4. $$P=-\dfrac{P}{B}\\$$

## 7

Solve the inequality $$2-x>10\\$$

1. $$x<-8\\$$
2. $$x<-12\\$$
3. $$x>-5\\$$
4. $$x>-8\\$$

## 8

Perform the operations and simplify:$$\dfrac{1}{\frac{1}{x}+\frac{1}{y}}\\$$

1. $$x+y\\$$
2. $$\dfrac{x+y}{xy}\\$$
3. $$\dfrac{xy}{x+y}\\$$
4. $$\dfrac{1}{x}+\dfrac{1}{y}\\$$

## 9

Simplify the expression: $$\dfrac{12m^4n}{15mn^2}\\$$

1. $$\dfrac{12m^3}{15n}\\$$
2. $$\dfrac{4m^3n}{5n^2}\\$$
3. $$\dfrac{4m^3}{5}\\$$
4. $$\dfrac{4m^3}{5n}\\$$

## 10

Simplify the expression by rationalizing the denominator: $$\dfrac{1+\sqrt{15}}{4-\sqrt{15}}\\$$

1. $$1+\sqrt{15}\\$$
2. $$19+5\sqrt{15}\\$$
3. $$\frac{2}{3}\\$$
4. $$\frac{1}{4}\\$$

## 11

What is the slope of the line through the points $$(3,-1)$$ and $$(5,7)\\$$?

1. $$3\\$$
2. $$\frac{1}{4}\\$$
3. $$4\\$$
4. $$1\\$$

## 12

How would the following set be written in interval notation? $$\left\{x\,|\,-2 < x\le1\right\}\\$$

1. $$(-2,1)\\$$
2. $$(-2,1]\\$$
3. $$(-\infty,-2)\cup[1,\infty)\\$$
4. $$[-1,2)\\$$

## 13

Find the product of the complex numbers $$(2-3i)(1+2i)\\$$

1. $$8+i\\$$
2. $$2-6i\\$$
3. $$-4+i\\$$
4. $$8\\$$

## 14

Find a value of $$c$$ so that the quadratic expression will be a perfect square: $$x^2-6x+c\\$$

1. $$36\\$$
2. $$-9\\$$
3. $$9\\$$
4. $$-36\\$$

## 15

Add the following fractions: $$\dfrac{2}{x}+\dfrac{x-1}{x+1}\\$$

1. $$\dfrac{x^2+x+2}{x^2+x}\\$$
2. $$\dfrac{x+1}{2x+1}\\$$
3. $$2\\$$
4. $$\dfrac{2-x}{x}\\$$

## 16

Simplify the following expression: $$\dfrac{x^3-x^2-2x}{x^3+4x^2+3x}\\$$

1. $$-\dfrac{1}{4}\\$$
2. $$\dfrac{x-2}{x+3}\\$$
3. $$-\dfrac{2}{3}\\$$
4. $$-\dfrac{3}{7}\\$$

## 17

For what value of $$x$$ is the following expression undefined? $$\dfrac{x-3}{2-x}\\$$

1. $$3\\$$
2. $$3$$ and $$2\\$$
3. $$2\\$$
4. It is defined for all values of $$x\\$$.

## 18

Find the solution of the equation: $$| 1-x | =5\\$$

1. $$6\\$$
2. $$4\\$$
3. $$-4\\$$
4. $$6$$ and $$-4\\$$

## 9

$$\sqrt{(-4)^2}=\\$$

1. $$-4\\$$
2. $$-2\\$$
3. $$2\\$$
4. $$4\\$$

## 20

Perform the indicated operations and simplify the result: $$\dfrac{2a^2b}{b^2}\div\dfrac{6a^3}{b}\\$$

1. $$\dfrac{12a^5}{b^2}\\$$
2. $$\dfrac{1}{3a}\\$$
3. $$\dfrac{1}{3a^2}\\$$
4. $$\dfrac{1}{3ab}\\$$